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Advanced Analysis Methodologies
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Advanced Methodologies

• Censored Data
– Converting to continuous data often presents analysis challenges
– For example, if we use detection range, how do we account for non-

detects in the analysis
– Censored data provides a solution

• Generalized Linear Models
– System performance is often best characterized by non-normal data

» Time
» Accuracy
» Pass/Fail

– Generalized linear models provide a more flexible analysis 
framework to handle these non-normal outcomes.

• Bayesian Methodologies
– Allow for the incorporation of multiple sources of information, when 

it is appropriate
– Provide methodologies for finding confidence intervals when there 

are zero observations
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Motivating Example:  Submarine Detection Time

• System Description
– Sonar system replica in a 

laboratory on which 
hydrophone-level data, 
recorded during real-world 
interactions can be played 
back in real-time.

– System can process the 
raw hydrophone-level data 
with any desired version 
of the sonar software.

– Upgrade every two years; 
test to determine new 
version is better

– Advanced Processor Build 
(APB) 2011 contains a 
potential advancement 
over APB 2009 (new 
detection method 
capability)

• Response Variable: Detection Time
– Time from first appearance in recordings until operator detection

» Failed operator detections resulted in right censored data

• Factors:
– Operator proficiency (quantified score based on experience, 

time since last deployment, etc.)
– Submarine Type (SSN, SSK)
– System Software Version (APB 2009, APB 2011)
– Array Type (A, B)
– Target Loudness (Quiet, Loud)
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Detection Time Distribution

• Detection time does not follow a normal distribution

Normal Distribution Lognormal Distribution
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Failed Detection Opportunities

Not all runs resulted in a 
successful detections
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Submarine Detection Time: Analysis

• Advanced statistical modeling techniques incorporated all of the information 
across the operational space.

– Generalized linear model with log-normal detection times
– Censored data analysis accounts for non-detects

• All factors were significant predictors of the detection time

Factor/Model Term Description of Effect P-Value

Recognition Factor Increased recognition factors resulted in 
shortened detection times 0.0227

APB Detection time is shorter for APB-11 0.0025

Target Type Detection time is shorter for SSN targets 0.0004

Target Noise Level Detection time is shorter for loud targets 0.0012

Array Type Detection time is shorter for Array B 0.0006

Type* Noise

Additional model terms improve predictions.  Third 
order  interaction is marginally significant, 
therefore all second order terms are retained.

0.0628

Type* Array 0.9091

Noise*Array 0.8292

Type* Noise*Array 0.0675
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Submarine Detection Time: Results

• Median detection times show a clear advantage of APB-11 over the 
legacy APB

• Confidence interval widths reflect weighting of data towards APB-11

• Statistical model provides insights in areas with limited data
– Note median detection time in cases with heavy censoring is shifted 

higher

Shows
impact of 
censored 

data
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Introduction to Censored Data Analysis

• Censored data = we didn’t observe the detection directly, but we 
expect it will occur if the test had continued

– We cannot make an exact measurement, but there is information we 
can use. The no detects are on the tail of the distribution!

– Same concept as a time-terminated reliability trials (failure data)

Run 
No. Result Result 

Code

1 Detected Target 1

2 Detected Target 1

3 No detect 0

4 Detected Target 1

5 Detected Target 1

6 Detected Target 1

7 No detect 0

8 No detect 0

9 Detected Target 1

10 Detected Target 1

Corresponding 
Timelines Run 

No.
Time of Detection

(hours after COMEX)

1 4.4

2 2.7

3 >6.1

4 2.5

5 3.5

6 5.3

7 >6.2

8 >5.8

9 1.8

10 2.7

= Detect = No-Detect
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Parameterizing Data
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• Assume that the time data come from an underlying distribution, 
such as the log-normal distribution

– Other distributions may apply – you must consider carefully. See 
slide 4 where we did it for the submarine detection data

• That parameterization will enable us to link the time metric to the 
probability of detection metric.

Probability Density Function Cumulative Distribution Function (CDF)

Time-to-Detect (hours)



5/20/2015-10

Parameterizing Data
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• Example: Aircraft must detect the target within it’s nominal time 
on station (6-hours)

– Binomial metric was detect/non-detect within time-on-station

• If we determine the shape of this curve (i.e., determine the 
parameters of the PDF/CDF), we can use the time metric to 
determine the probability to detect!

Probability Density Function Cumulative Distribution Function (CDF)

Time-to-Detect (hours)
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Conceptualizing the 
Censored-Data Fit

• For non-censored measurements, the PDF fit is easy 
to conceptualize

• For censored measurements, the data can’t define
the PDF, but we know they contribute to the probability 
density beyond the censor point

• Example event from an OT:  
– No Detects (Detect Time > 6 hours) lie somewhere on the tail of the 

distribution.
– Detect will eventually occur sometime after 6 hours, pushing the distribution 

curve to the right
– Mathematically, there are ways of calculating the shifted distribution.

Including a bunch of 
censored (Time > 6 hour) 
events will push the CDF

to the right
(see how probability to 

detect is lower at 6 hours)0 1 2 3 4 5 6 7 8 9 10
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Characterizing Performance with Censored Data

• Now let’s employ DOE…

• Consider a test with 16 runs
– Two factors examined in the test
– Run Matrix:

– Detection Results:

Target Fast Target Slow Totals
Test Location 1 4 4 8

Test Location 2 4 4 8

8 8 16

Target Fast Target Slow Totals
Test Location 1 3/4 4/4 7/8 (0.875)

Test Location 2 3/4 1/4 4/8 (0.5)

6/8 (0.75) 5/8  (0.63)
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Attempt to Characterize Performance

• As expected, 4 runs in 
each condition is 
insufficient to 
characterize 
performance with a 
binomial metric

• Cannot tell which factor 
drives performance or 
which conditions will 
cause the system to 
meet/fail requirements

• Likely will only report a 
‘roll-up’ of 11/16

– 90% confidence 
interval:
[ 0.45, 0.87 ]
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Characterizing Performance Better

• Measure time-to-detect in lieu 
of binomial metric, employ 
censored data analysis…

• Significant reduction in 
confidence intervals!

– Now can tell significant 
differences in performance

» E.g., system is performing
poorly in Location 2 
against slow targets

– We can confidently conclude 
performance is above 
threshold in three conditions

» Not possible with a 
“probability to detect” 
analysis!
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Censored Data Analysis Summary

• Many binary metrics can be recast using a continuous 
metrics

– Care is needed, does not always work, but…
– Cost saving potential is too great not to consider it!

• With Censored-data analysis methods, we retain the binary 
information (non-detects), but gain the benefits of using a 
continuous metric

– Better information for the warfighter
– Maintains a link to the “Probability of…” requirements

• Converting to the censored-continuous metric maximizes 
test efficiency

– In some cases, as much as 50% reduction in test costs for 
near identical results in percentile estimates

– Benefit is greatest when the goal is to identify significant 
factors (characterize performance)
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Generalized Linear Models Overview

• There are many classes of statistical models:
– General linear models (normal distribution)
– Generalized linear models (Exponential family)

» Provides a simplified framework for numerically maximizing the 
likelihood

– Location-scale regression (location scale, log-location scale)
– Nonlinear regression (almost everything else)

• These regression analyses are a logical extension of standard 
statistical regression analysis

• However, methods presented here are more general
– Data not necessarily normal
– Data may not have constant variance
– Lind between data and response may not be linear

• Practical T&E problems often cannot be solved with 
straightforward regression analysis
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Model Specification:
GLM versus Generalized Linear Model

• General Linear Model (e.g., regression)
– Model:

– Where, k is the number of factors and h.o.t. are higher order 
terms. 

• Generalized Linear Model
– Model: 
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Exponential Family

• Class of distributions that provides the basis for Generalized 
Linear Models

• Distributions include:
– Continuous

» Normal
» Log-normal
» Beta
» Gamma
» Exponential

– Discrete:
» Binomial/Bernoulli
» Poisson
» Negative Binomial

– And several more!

• Provide flexible shapes that can be used to describe almost 
any type of data!

Gamma Distribution

Beta DistributionLogistic 
Regression

is a 
Generalized 

Linear 
Model
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Pass/Fail Analysis: A Second Motivating Example

• System’s goal is to maintain a lock on a moving target

• Response Variable: Maintain track? (Yes/No)
– Debatable if a continuous metric could have replaced this 

binary response.  However, no continuous metric was tracked 
during the test, so we are stuck analyzing pass/fail response.

• Factors:
– Target Size (small/large)
– Target Speed (slow/fast)
– Time of Day (day/night)
– Target Aspect (frontal/quarter)
– Maneuvering (yes/no)

• Generalized linear models can be used to fit logistic and 
probit regression under the same framework!
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Generalized Linear Model: Break Lock?

• Logistic Regression Model:
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Summarizing Results
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• There is a model for every situation!

– x2 for Bayesian versions of these model forms, which can also incorporate 
prior knowledge

– Note, Bayesian methodologies can make analysis easier by avoiding the 
complex optimization problem.

General Linear Models

Parametric Statistical Model Hierarchy

Regression/ANOVA
• Normality
• Homoscedasticity
• Independence
• Linearity

Generalized Linear Models

• One framework

• Normality
• Homoscedasticity
• Independence
• Linearity

Location-Scale Models, Non-parametric Models

• +More Flexible 
Forms

• Independence

Generalized Linear Mixed Models

• +Random Effect
• Independence
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Bayesian Methodology –
Overview

Model 
for 

Data

Data

Likelihood
L(data | θ) Inference

Prior
f(θ)

Posterior
f(θ | data)

Classical 
Statistics

The inclusion of the prior distribution allows us 
to incorporate different types of information in 

the analysis
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Motivating Example:
Stryker Reliability Analysis

• Statistical methods (including DOE) apply to reliability data as well as 
performance data

• Stryker Retrospective Case Study
– Infantry Carrier Vehicle (ICV)  - the infantry/mission-vehicle type
– Base vehicle for eight separate configurations
– IOT&E Results:

• Results do not leverage DT data or relationships between vehicles

Stryker Reliability by Variant using Operational Test Data

Vehicle Variant
Total Miles 

Driven
System 
Aborts MMBSA

MMBSA
95% LCL

MMBSA 
95% UCL

Antitank Guided Missile Vehicle (ATGMV) 10334 12 861 493 1667
Commander’s Vehicle (CV) 8494 1 8494 1525 335495

Engineer Squad Vehicle (ESV) 3771 13 290 170 545
Fire Support Vehicle (FSV) 2306 1 2306 414 91082

Infantry Carrier Vehicle (ICV) 29982 35 857 616 1230
Mortar Carrier Vehicle (MCV) 4521 4 1130 441 4148

Medical Evacuation Vehicle (MEV) 1967 0 - 657 -
Reconnaissance Vehicle (RV) 5374 2 2687 744 22187

Total 66749 68 982 774 1264
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The Stryker Reliability Data Set

Vehicle Type
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Exact Failure
Right Censored 

Developmental Testing Operational Testing
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Bayesian Analysis for 
Incorporating Developmental Test

• Informative Priors
– Based on subject matter expertise (there will be a degradation in OT 

reliability)
» Data is already included in model

• Hierarchical Models
– Assumes the parameters are related, the data tells us how closely related
– Hierarchical models for the Stryker case study allow us to estimate MEV 

reliability based on other data

Bayesian Analysis Model:
݌ݔ݁	~	஽்ݐ ௜ߣ ሻߟ/௜ߣሺ݌ݔ݁~ை்ݐ				

݅ ൌ 1,2, … , 8 (vehicle variants including MEV)

,௜~݃ܽ݉݉ܽሺܽߣ ܾሻ
ܽݐܾ݁~ߟ 1,1

ܽ	~	݃ܽ݉݉ܽ .001, . 001
ܾ~݃ܽ݉݉ܽ .001, . 001
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Stryker Reliability Results

• Traditional Approach:

– Extremely wide confidence 
intervals

– Results in unrealistic estimates 
for  the Commander’s Vehicle

• Exponential Regression Approach 
& Bayesian Approaches

– Allows for a degradation in 
MMBSA from DT to OT 
(increases could occur as well).

– Leverages all information
» Better estimates of MMBSA
» Tighter confidence intervals
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Bayesian Methods Summary

• Provide very flexible analysis methods

• Priors allow us to consider other types of data, basing 
decisions on all available information about a system

• Methods can easily be extended to incorporate other 
situations:

– Kill chain analysis
– Complex system structures reliability analysis
– Incorporate any relevant prior testing, modeling and simulation, 

or engineering analysis


